Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 48(2): 403-411, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30951115

RESUMO

Sediment oxygen demand (SOD) plays a fundamental role in biological and chemical processes within the benthic layer of a water body. Land use, including agricultural land use, can affect SOD. However, a wide variety of approaches have been used for in situ SOD chamber construction and data collection, and modelers frequently use SOD values from the literature, without consideration of the differences in methods. Here, we review existing literature on SOD chambers (32 papers, 1974-2016), compare the differences between in situ and laboratory methods, evaluate the effects of in situ chamber mixing, and discuss common challenges associated with deployment. A cohesive in situ sealed chamber design for use with a multiparameter water-quality instrument is presented as an effort toward standardizing SOD methodology, an important consideration that may facilitate integration of SOD data sets among multiple research efforts.


Assuntos
Análise da Demanda Biológica de Oxigênio/métodos , Sedimentos Geológicos/química , Monitoramento Ambiental
2.
Reg Anesth Pain Med ; 43(7): 789-794, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30199512

RESUMO

BACKGROUND AND OBJECTIVES: This study evaluated the long-term durability of the minimally invasive lumbar decompression (MILD) procedure in terms of functional improvement and pain reduction for patients with lumbar spinal stenosis and neurogenic claudication due to hypertrophic ligamentum flavum. This is a report of 2-year follow-up for MILD study patients. METHODS: This prospective, multicenter, randomized controlled clinical study compared outcomes for 143 patients treated with MILD versus 131 treated with epidural steroid injections. Follow-up occurred at 6 months and at 1 year for the randomized phase and at 2 years for MILD subjects only. Oswestry Disability Index, Numeric Pain Rating Scale, and Zurich Claudication Questionnaire were used to evaluate function and pain. Safety was evaluated by assessing incidence of device-/procedure-related adverse events. RESULTS: All outcome measures demonstrated clinically meaningful and statistically significant improvement from baseline through 6-month, 1-year, and 2-year follow-ups. At 2 years, Oswestry Disability Index improved by 22.7 points, Numeric Pain Rating Scale improved by 3.6 points, and Zurich Claudication Questionnaire symptom severity and physical function domains improved by 1.0 and 0.8 points, respectively. There were no serious device-/procedure-related adverse events, and 1.3% experienced a device-/procedure-related adverse event. CONCLUSIONS: MILD showed excellent long-term durability, and there was no evidence of spinal instability through 2-year follow-up. Reoperation and spinal fracture rates are lower, and safety is higher for MILD versus other lumbar spine interventions, including interspinous spacers, surgical decompression, and spinal fusion. Given the minimally invasive nature of this procedure, its robust success rate, and durability of outcomes, MILD is an excellent choice for first-line therapy for select patients with central spinal stenosis suffering from neurogenic claudication symptoms with hypertrophic ligamentum flavum. CLINICAL TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov, identifier NCT02093520.


Assuntos
Descompressão Cirúrgica/métodos , Ligamento Amarelo/cirurgia , Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Estenose Espinal/cirurgia , Idoso , Idoso de 80 Anos ou mais , Descompressão Cirúrgica/tendências , Feminino , Seguimentos , Humanos , Ligamento Amarelo/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Masculino , Procedimentos Cirúrgicos Minimamente Invasivos/tendências , Estenose Espinal/diagnóstico por imagem , Fatores de Tempo , Resultado do Tratamento
3.
PLoS One ; 12(3): e0173419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28267810

RESUMO

Increased nutrient and sediment loading in rivers have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition. Green algae were abundant in riverine sites, whereas cyanobacteria were most abundant in the lacustrine sites. Mussel survival was high (95%) for both species. Lampsilis cardium exhibited lower growth relative to L. siliquoidea (p <0.0001), but growth of L. cardium was not significantly different across sites (p = 0.13). In contrast, growth of L. siliquoidea was significantly greater at the most upstream riverine site compared to the lower three lacustrine sites (p = 0.002). In situ growth of Lampsilis siliquoidea was positively related to volatile solids (10 - 32 µm fraction), total phosphorus (<10 and 10 - 32 µm fractions), and select FA in the seston (docosapentaeonic acid, DPA, 22:5n3; 4,7,10,13,16-docosapentaenoic, 22:5n6; arachidonic acid, ARA, 20:4n6; and 24:0 in the <10 and 10 - 32 µm fractions). Our laboratory feeding experiment also indicated high accumulation ratios for 22:5n3, 22:5n6, and 20:4n6 in mussel tissue relative to supplied algal diet. In contrast, growth of L. siliquiodea was negatively related to nearly all FAs in the largest size fraction (i.e., >63 µm) of seston, including the bacterial FAs, and several of the FAs associated with sediments. Reduced mussel growth was observed in L. siliquoidea when the abundance of cyanobacteria exceeded 9% of the total phytoplankton biovolume. Areas dominated by cyanobacteria may not provide sufficient food quality to promote or sustain mussel growth.


Assuntos
Ração Animal , Bivalves/crescimento & desenvolvimento , Composição Corporal , Ácidos Graxos/química , Água Doce , Ração Animal/análise , Animais , Clorofila/análise , Sedimentos Geológicos , Lipídeos/análise , Minnesota , Fitoplâncton , Rios , Wisconsin
4.
Ecol Appl ; 26(3): 873-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27411257

RESUMO

Lake Erie is a large lake straddling the border of the USA and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: (1) How does secondary production and food quality for consumers vary across this large mixing zone? and (2) Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee river mouth and lowest in the open waters of the lake. Mussel tissues in the Maumee river mouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee river mouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the mussels, suggesting more of these important FAs in locations with more cyanobacteria. These results suggest that growth of secondary consumers and the availability of important fatty acids in the western basin are centered on the Maumee river mouth.


Assuntos
Bivalves/fisiologia , Ecossistema , Lagos , Animais , Cianobactérias/fisiologia , Ácidos Graxos/química , Great Lakes Region , Lipídeos/química , Rios , Fatores de Tempo
5.
Glob Chang Biol ; 22(2): 613-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26390994

RESUMO

Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.


Assuntos
Ecossistema , Atividades Humanas , Qualidade da Água , Canadá , Carbono/análise , Clorofila/análise , Clorofila A , Humanos , Lagos , Nitratos/análise , Nitritos/análise , Fósforo/análise , Lagoas , Densidade Demográfica , Rios , Estados Unidos , Poluentes da Água/análise
6.
PLoS One ; 8(7): e69313, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935980

RESUMO

Terrestrial agricultural activities strongly influence riverine nitrogen (N) dynamics, which is reflected in the δ(15)N of riverine consumer tissues. However, processes within aquatic ecosystems also influence consumer tissue δ(15)N. As aquatic processes become more important terrestrial inputs may become a weaker predictor of consumer tissue δ(15)N. In a previous study, this terrestrial-consumer tissue δ(15)N connection was very strong at river sites, but was disrupted by processes occurring in rivermouths (the 'rivermouth effect'). This suggested that watershed indicators of N loading might be accurate in riverine settings, but could be inaccurate when considering N loading to the nearshore of large lakes and oceans. In this study, the rivermouth effect was examined on twenty-five sites spread across the Laurentian Great Lakes. Relationships between agriculture and consumer tissue δ(15)N occurred in both upstream rivers and at the outlets where rivermouths connect to the nearshore zone, but agriculture explained less variation and had a weaker effect at the outlet. These results suggest that rivermouths may sometimes be significant sources or sinks of N, which would cause N loading estimates to the nearshore zone that are typically made at discharge gages further upstream to be inaccurate. Identifying definitively the controls over the rivermouth effect on N loading (and other nutrients) will require integration of biogeochemical and hydrologic models.


Assuntos
Agricultura/métodos , Ecossistema , Nitrogênio/metabolismo , Rios/química , Animais , Teorema de Bayes , Bivalves/metabolismo , Canadá , Estuários , Geografia , Insetos/metabolismo , Lagos , Modelos Lineares , Michigan , Isótopos de Nitrogênio/metabolismo , Movimentos da Água , Áreas Alagadas
7.
PLoS One ; 8(8): e70666, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940619

RESUMO

Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.


Assuntos
Bivalves/metabolismo , Ecossistema , Ácidos Graxos/metabolismo , Insetos/metabolismo , Agricultura , Animais , Organismos Aquáticos/metabolismo , Clorofila/química , Clorofila A , Eutrofização , Cadeia Alimentar , Lagos , Metabolismo dos Lipídeos , Michigan , Rios
8.
J Environ Qual ; 42(2): 573-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673850

RESUMO

Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha yr, 26 kg total N ha yr, and 20 kg total P ha yr. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m h. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river.


Assuntos
Rios , Áreas Alagadas , Mississippi , Solo
9.
J Environ Qual ; 37(3): 1133-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18453433

RESUMO

Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.


Assuntos
Agricultura , Água Doce/química , Nitratos/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Modelos Teóricos
10.
Environ Toxicol Chem ; 22(11): 2554-60, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14587892

RESUMO

Ammonia is a relatively toxic compound generated in water and sediments by heterotrophic bacteria and accumulates in sediments and pore water. Recent data suggest that unionid mussels are sensitive to un-ionized ammonia (NH3) relative to other organisms. Existing sediment exposure systems are not suitable for ammonia toxicity studies with juvenile unionids; thus, we modified a system to expose juveniles to ammonia that was continuously infused into sediments. This system maintained consistent concentrations of ammonia in pore water up to 10 d. Juvenile Lampsilis cardium mussels were exposed to NH3 in pore water in replicate 96-h and 10-d sediment toxicity tests. The 96-h median lethal concentrations (LC50s) were 127 and 165 microg NH3-N/L, and the 10-d LC50s were 93 and 140 microg NH3-N/L. The median effective concentrations (EC50s) (based on the proportion affected, including dead and inactive mussels) were 73 and 119 microg NH3-N/L in the 96-h tests and 71 and 99 microg NH3-N/L in the 10-d tests. Growth rate was substantially reduced at concentrations between 31 and 76 microg NH3-N/L. The lethality results (when expressed as total ammonia) are about one-half the acute national water quality criteria for total ammonia, suggesting that existing criteria may not protect juvenile unionids.


Assuntos
Amônia/toxicidade , Bivalves/fisiologia , Modelos Teóricos , Poluentes da Água/toxicidade , Fatores Etários , Animais , Exposição Ambiental , Sedimentos Geológicos/química , Dose Letal Mediana , Controle de Qualidade , Poluentes da Água/normas
11.
Environ Toxicol Chem ; 22(11): 2561-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14587893

RESUMO

We conducted a series of in situ tests to evaluate the effects of pore-water ammonia on juvenile Lampsilis cardium in the St. Croix River (WI, USA). Threats to this river and its associated unionid fauna have accelerated in recent years because of its proximity to Minneapolis-St. Paul, Minnesota, USA. In 2000, caged juveniles were exposed to sediments and overlying water at 12 sites for 10 d. Survival and growth of juveniles was significantly different between sediment (mean, 47%) and water column (mean, 86%) exposures; however, these effects were unrelated to pore-water ammonia. During 2001, juveniles were exposed to sediments for 4, 10, and 28 d. Pore-water ammonia concentrations ranged from 0.3 to 62.0 microg NH3-N/L in sediments and from 0.5 to 140.8 microg NH3-N/L within exposure chambers. Survival (mean, 45, 28, and 41% at 4, 10, and 28 d, respectively) and growth (range, 3-45 microm/d) of juveniles were highly variable and generally unrelated to ammonia concentrations. Although laboratory studies have shown unionids to be quite sensitive to ammonia, further research is needed to identify the route(s) of ammonia exposure in unionids and to understand the factors that contribute to the spatial variability of ammonia in rivers.


Assuntos
Amônia/intoxicação , Bivalves/crescimento & desenvolvimento , Exposição Ambiental , Poluentes da Água/intoxicação , Animais , Monitoramento Ambiental , Sedimentos Geológicos/química , Porosidade , Rios , Análise de Sobrevida , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...